XCMS and Metaboanalyst

Stephen Barnes

02-07-20

					Sel	ec	t r	ev	iev	v r	esi	ults	S				
			Home	MRM	Databases -	Create Job -	View Results	XCMS Public	XCMS Institute	Stored Datasets	Account	Toolbox	Help -	O Logout [empy1977]			
Show 15 r	rows	C Resubmit	늘 Job Gro	uping × Dele	te											S	earch
	EXPTYPE \$	Status	÷	JobID Filter	Progress			JobNar	ne	÷		Datase Sourc	ets / es	Created 👙	Parameters (ID#)	Group Filter	Share
•	PAIR	VIEW		1377251	job complete		P.	2020-02-0	5_07:54			Control (#4 Genistein (#	59649) 459645)	2020-02-05 07:44:42	33859		~
			Home	MRM	Databases -	Create Job -	View Results	XCMS Public	XCMS Institute	Stored Datasets	Accour	t Toolbo	x Help -	Logout [empy1977	'I		
						Da	tase	et Ma	anan	or · (Cont	rol					
Show 2	25 rows 🕹 Add								inag <u>@</u>		50111						
		× Delete							ß		-011L						Search
	FileName	× Delete	Active	Status		¢	Size	\$	File Chec	ksum	50111			Upload Date	e	¢	Search
	FileName Neg_C4.wi	× Delete	Active	Status	.OAD_COMPLET	÷	Size	¢	File Chec	ksum	d46b5672	94e582487	'895ab	Upload Date 2020-0	e 02-05 07:49:0	\$	Search ID 306103
	FileName Neg_C4.wi Neg_C5.wi	× Delete	Active	Status UPI UPI	OAD_COMPLET	÷ E E	Size 5.731	¢ MB MB	File Chec	ksum c1ef6f5d34 6bc36f394	d46b5672 3c85da570	94e582487 9f060bc938	895ab 347fd8	Upload Date 2020-0 2020-0	e)2-05 07:49:0)2-05 07:49:0	¢ 5 5	Search ID 306103 306103
	FileName Neg_C4.wi Neg_C5.wi Neg_C6.wi	× Delete	Active	Status UPI UPI	OAD_COMPLET	÷ E E	Size 5.73 5.93 5.54	¢ MB MB MB	File Chec	ksum c1ef6f5d34 6bc36f394 326f8e84f1	d46b5672 3c85da57(54ea93a7	94e582487 9f060bc938 45be062a7	895ab 347fd8 34438	Upload Date 2020-C 2020-C 2020-C 2020-C 2020-C	e)2-05 07:49:0)2-05 07:49:0)2-05 07:49:0	¢ 5 5 5 5	Search ID 306103 306103 306103
	FileName Neg_C4.wi Neg_C5.wi Neg_C6.wi Neg_C4.wiff:	× Delete * iff iff iff scan scan	Active	Status UPI UPI UPI	OAD_COMPLET OAD_COMPLET OAD_COMPLET OAD_COMPLET	÷ E E E	Size 5.73 l 5.93 l 5.54 l 122.77	¢ MB MB MB MB	File Chec	ksum c1ef6f5d34 6bc36f394 326f8e84f1 05f51d759	d46b5672 3c85da57(54ea93a7 10767a89a 51470eb68	94e582487 9f060bc938 45be062a7 07df5e23d7	895ab 347fd8 34438 77ff8f	Upload Date 2020-0 2020-0 2020-0 2020-0 2020-0 2020-0 2020-0	e)2-05 07:49:0)2-05 07:49:0)2-05 07:49:0)2-05 07:49:0)2-05 07:49:0	¢ 5 5 5 5 5 5	Search ID 306103 306103 306104 306104 306104

Click on the Results table in sidebar

featureidx*foldpyalueupdownmzmedrtmedmaxintdtaste1_mendtaste2_menistoopenisdotesadductspeak00.000.00000e+000.00 </th <th>💠 🎤 Column</th> <th>s 🕑 Hide isotopic p</th> <th>eaks</th> <th></th> <th></th> <th>ra ka Pa</th> <th>ge 1 of 220 🗪 🖡</th> <th>100 \$</th> <th></th> <th></th> <th></th> <th>Vi</th>	💠 🎤 Column	s 🕑 Hide isotopic p	eaks			ra ka Pa	ge 1 of 220 🗪 🖡	100 \$				Vi
00.00000e+00.000.	featureidx 🕈	fold	pvalue	updown	mzmed	rtmed	maxint	dataset1_mean	dataset2_mean	isotopes	adducts	peakgroup
00.00000e+000.	0	0.0	0.00000e+0		0.00	0.00	0.00	0.00	0.00			
00.00000e+0 \cdot 0.000.000.000.000.000.000.00013.30.00017 \cdot 297.047916.23.6816.0313.2770M-H-298.05527.630.000264 \cdot 226.08119.023.8809.8977.6970M+Cl-26.131720.000.0000664 \cdot 0.00000.000.000.000.000.000.0016211730.000.0000640.000.000.000.000.000.00162117.011240.0030.0000640.000.000.000.000.000.00162112112112140.0030.0000640.000.0000.0000.000.000.001617120120121<	0	0.0	0.00000e+0		0.00	0.00	0.00	0.00	0.00			
1 8.3 0.00017 $ P $ 297.0479 16.27 836 1,603 13.277 $ M-H $ -98.056 59 2 7.8 0.00025 $ P $ 261.081 19.02 8880 987 7,697 $ M-H $ -29.016 17 2 0.00 0.00000+0 $ P $ 261.081 19.02 8880 987 7,697 $ M-H $ $ M-H $ $ P $ <td< th=""><td>0</td><td>0.0</td><td>0.00000e+0</td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td><td></td><td></td></td<>	0	0.0	0.00000e+0		0.00	0.00	0.00	0.00	0.00			
2 7.8 0.00025 \mathbb{P} 261081 19.02 888 987 7.69 (M+CI) - 226.13 1 2 0.00 0.0000+0 0.00	1	8.3	0.00017	UP	297.0479	16.27	836	1,603	13,277		[M-H]- 298.056	59
2 0.0 0.0000eee \cdot 0.00 0.00	2	7.8	0.00025	UP	261.0811	19.02	880	987	7,697		[M+CI]- 226.113	117
3 5.0 0.00025 DVM 668.228 15.52 1.915 20.880 4.19 [121]M]- 1 1 4 2.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00035 0.00055 0.00035 0.00055 <	2	0.0	0.00000e+0		0.00	0.00	0.00	0.00	0.00			
4 0.0003 P 240.1254 17.08 746 66,272 13,020 M-H-Cl/2-46 21 5 4.1 0.00041 DOWN 309,8931 1.97 37 97 23 60 M-H-Cl/2-46 21 6 6.2.6 0.00062 UP 663.7176 10.85 124 300 773 0.013 M-H-Cl/2-46 212 7 0.00 0.00063 UP 0.257.104 10.65 56.85 20.970 0.42.01 122[M-M M-H+COU-M 16 8 0.1.3 0.0007 DOWN 0.471.2782 25.36 0.64 20.970 0.42.01 0.201M-M M-H+COU-M 16 9 0.0007 DOWN 0.471.2782 0.503 3.692 22.774 0.22.17 0.41.179 0.41.19 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 0.41.199 <	3	5.0	0.00025	DOWN	688.2208	15.52	1,915	20,880	4,191	[1621][M]-		14
5 4.1 0.00041 DOWN 309.8931 1.97 37 97 2.3 6.0 36.0 6 0.0062 UP 673.716 10.85 124 300 77.3 221 212 7 0.0063 UP 257.104 17.66 5.845 20.970 242.01 221/M- M-H+COCH- 16 8 0.1.3 0.0007 DOWN 471.272 25.36 6.66 5.60 4.07 201/M- M-H+COCH- 13 9 0.10.3 0.0007 DOWN 471.272 25.36 6.66 5.60 4.07 0.01 M-H+COSH-89 14 10 0.0007 DOWN 879.291 15.50 3.692 22.77 2.21 0.01/M- M-H-CH3H-89 14 10 0.0007 DOWN 879.291 15.50 3.692 22.77 2.21 0.01/M- M-H-CH3H-89 14 11 0.0008 DOWN 392.104 16.2 4.158 <td>4</td> <td>2.1</td> <td>0.00039</td> <td>UP</td> <td>240.1254</td> <td>17.08</td> <td>746</td> <td>6,272</td> <td>13,020</td> <td></td> <td>[M-H+CI]2- 446</td> <td>21</td>	4	2.1	0.00039	UP	240.1254	17.08	746	6,272	13,020		[M-H+CI]2- 446	21
6 0.0006 P 673.716 10.85 124 300 773 0 212 7 0.00063 P 0.257.1041 17.66 5.845 20.970 42.71 122[M- M-H+COOH- 16 8 1.3 0.00074 DWN 471.2782 25.36 6.46 5.60 3.47 0.001 M-H+COOH- 16 9 1.0.3 0.00074 DWN 471.2782 25.36 6.46 5.60 3.47 0.01 M-H+COOH- 15.3 9 0.00074 DWN 471.2782 25.36 3.602 22.774 22.01 M-H-COH- M-H-COH- 16.3 9 0.00075 DWN 879.291 15.50 3.692 22.774 22.01 M-H-COH- M-H-CO	5	4.1	0.00041	DOWN	309.8931	1.97	37	97	23			368
7 0.00063 UP 257.1041 17.66 5,845 20,970 42,701 [22][M]- [M+H+COM]- 16 8 1.3 0.00074 DOWN 471.2782 25.36 G 6 G 437 M 153 9 1.03 0.00079 DOWN 879.2911 15.50 3,692 22,774 2,221 [201][M]- [M-H-CH3]-893 14 100 2.3 0.00079 UP 207.0704 16.67 41.47 3,287 [M-H-COL]-803 14 110 1.3 0.00088 DOWN 392.1401 22.84 158 6.611 464 [721][M+1]- [M-H-COL]-803 17 12 1.4 0.00095 UP 315.5503 1.26 2.0 31 43 [M-M-COL]-803 160	6	2.6	0.00062	UP	673.7176	10.85	124	300	773			212
8 1.3 0.00074 DOWN 471.2782 25.36 64 560 437 6 153 9 10.3 0.00079 DOWN 879.201 15.50 3.692 22.774 2.212 2001[M]- M-H-CH31-895 4 10 2.3 0.00079 UP 207.0704 16.47 456 1.447 3.287 M-H-CH31-895 4 110 1.3 0.00088 DOWN 392.1401 22.84 158 611 464 721[M+1]- M-H-CH31-895 4 12 1.4 0.00095 UP 315.5503 1.26 20 31 43 0.0005 M-H 612	7	2.0	0.00063	UP	257.1041	17.66	5,845	20,970	42,701	[222][M]-	[M-H+HCOOH]-	16
9 10.3 0.00079 DOWN 879.2911 15.50 3.692 22.774 2.221 [2001][M]- [M-H-G3]- 895 1 10 2.3 0.00079 UP 207.0704 16.47 456 1.447 3.287 [M-H-C0CH2]-2 6 11 1.3 0.00088 DOWN 392.1401 22.84 158 6611 464 [721][M+1]- 17 12 1.4 0.00095 UP 315.9503 1.26 20 31 43 0 602	8	1.3	0.00074	DOWN	471.2782	25.36	64	560	437			153
10 2.3 0.00079 UP 207.0704 16.47 456 1,447 3,287 (M-H-COCH2)-2 11 1.3 0.00088 DOWN 392.1401 22.84 158 6611 464 [721](H+1)- 177 12 1.4 0.00095 UP 315.9503 1.26 20 31 43 0 602	9	10.3	0.00079	DOWN	879.2911	15.50	3,692	22,774	2,221	[2001][M]-	[M-H-CH3]- 895	14
11 1.3 0.00088 DOWN 392.1401 22.84 158 611 464 [721][M+1]- 177 12 1.4 0.00095 UP 315.9503 1.26 20 31 43 602	10	2.3	0.00079	UP	207.0704	16.47	456	1,447	3,287		[M-H-COCH2]- 2	6
12 1.4 0.00095 UP 315.9503 1.26 20 31 43 602	11	1.3	0.00088	DOWN	392.1401	22.84	158	611	464	[721][M+1]-		177
	12	1.4	0.00095	UP	315.9503	1.26	20	31	43			602
					L.							

7

17.0

in the METLIN database? Phoxim and Quinalphos each have the mass of 298.0541 and m/z of 297.0469.

16.0

16.5

Retention Time (minutes)

15.5

	in results		
< >		Q Searce	:h
Back/Forward	View Group Action Share Ed	lit Tags	Search
Favorites	Name	Date Modified	Size
- Movies	n ricor.par	resterday at 10-31 AM	1.
	L rtcor.png	Yesterday at 10:31 AM	8
Downloads	▶ spec	Yesterday at 10:45 AM	7
Applications		Yesterday at 10:32 AM	1
Desktop	TICs_rtcor.png	Vesterday at 10:32 AM	4.
		Vesterday at 10:22 AM	
Documents	VCMS-diffreport-MultiClass view	resteruay at 10-22 Alvi	4.
Dictures	XCMS apportated diff _ nistein vs Control tex	Vesterday at 10:49 AM	20
MvExcelFolder	XCMS.diffreport Genistein vs.Control.tsv	Yesterday at 11:06 AM	8.3
	R xcms3 TIC Rda	Yesterday at 10:32 AM	16
(@) AirDrop	R xcms3 xset.Rda	Yesterday at 10:44 AM	17.2
iCloud	xcmsMS2 location.pdf	Yesterday at 11:06 AM	11
	xcmsMS2_location.png	Yesterday at 11:06 AM	1
	xcmsMS2-results_1377251.tsv	Yesterday at 11:06 AM	
Lyso-arachidonyl-conj	XCMSOnline log txt	Vesterday at 10:53 AM	

Г																					
																					ł
1	A	В	с	D	E	F	G	н	I	J	к	L	м	N	0	Р	Q	R	s	т	U
1	name	fold	log2fold	tstat	pvalue	qvalue	updown	mzmed	mzmin	mzmax	rtmed	rtmin	rtmax	npeaks	Genistein	Control	maxint	mean1	sd1	mean2	sd2
2	M297T16	8.283522	3.050244	19.0533	0.000174		1 UP	297.0479	297.0413	297.0496	16.27148	16.15827	16.35415	3	3 3		0 836.1301	1602.76	550.3791	13276.5	907.3281
3	M261T19_	7.795805	2.962698	13.83332	0.000246		1 UP	261.0811	261.0794	261.082	19.01917	19.018	19.09267	3	3 3		0 879.8413	987.2949	506.3779	7696.759	670.3139
4	M688T16_	4.982727	-2.31694	-13.7956	0.000248	4	1 DOWN	688.2208	688.2177	688.2246	15.52298	15.3927	15.74043	4	4 3		0 1915.04	20880.17	1263.487	4190.512	1671.611
5	M240T17_	2.075918	1.053749	15.64491	0.000394		1 UP	240.1254	240.1248	240.1261	17.07933	16.9915	17.08967	3	3 1		2 746.3985	6271.754	373.5183	13019.65	646.9801
6	M310T2	4.118643	-2.04217	-11.5939	0.000407	1	1 DOWN	309.8931	309.8925	309.9034	1.967567	1.830133	2.067917	3	3 0	(3 36.78276	96.73505	8.53576	23.48712	6.84717
7	M674T11	2.57281	1.363345	11.21279	0.000616	1	1 UP	673.7176	673.7168	673.7193	10.85063	10.84668	10.8927	4	4 1		3 123.8508	300.3898	59.44125	772.8457	42.34292
8	M257T18_	2.03629	1.025943	10.42087	0.000626	1	1 UP	257.1041	257.103	257.1053	17.66467	17.48383	17.70133	6	6 3		3 5845.161	20969.87	2237.369	42700.73	2835.467
9	M471T25	1.280748	-0.35699	-9.44545	0.00074		1 DOWN	471.2782	471.2752	471.2796	25.355	25.28833	25.42767	3	3 2		1 64.05115	560.3242	15.04764	437.4976	16.75898
10	M879T15	10.25602	-3.3584	-12.642	0.000791		1 DOWN	879.2911	879.2895	879.2927	15.49958	15.49462	15.5012	3	3 3	1	0 3691.939	22774.11	2443.614	2220.56	1399.478
11	M207T16_	2.271242	1.183481	12.12411	0.000792	4	1 UP	207.0704	207.0686	207.071	16.46547	16.36125	16.62183	5	5 3		1 455.8566	1447.048	225.5648	3286.596	134.8451
12	M392T23	1.31488	-0.39493	-9.02669	0.000885		1 DOWN	392.1401	392.1377	392.143	22.84075	22.81667	22.865	6	6 3		3 157.9479	610.6244	18.68669	464.3956	20.9306
13	M316T1	1.368723	0.45283	10.35851	0.000954		1 UP	315.9503	315.9503	315.9504	1.263917	1.176217	1.351617	2	2 2		0 19.5705	31.48005	1.611732	43.08745	1.081356
14	M937T15	4.49709	-2.16899	-8.55057	0.001624		1 DOWN	937.2353	937.2351	937.2355	15.49663	15.47277	15.52048	2	2 2		0 635.9555	2721.853	350.2295	605.2477	247.3198
15	M447T18_	2.551593	1.351398	7.957769	0.001764		1 UP	447.2589	447.2558	447.2593	17.9245	17.73317	18.04217	7	7 3		3 4707.9	14908.36	3064.607	38040.08	3994.597
16	M590T15_	29.42193	-4.87882	-22.0333	0.001895	1	1 DOWN	589.9996	589.9981	590.0002	15.49958	15.42068	15.52048	3	3 3		0 1587.976	14700.26	1111.749	499.6361	100.8869
17	M227T17	2.328883	1.219638	7.218261	0.002042	1	1 UP	227.0937	227.0932	227.0947	17.42117	17.29617	17.4475	5	5 2		3 2098.236	6497.621	1541.983	15132.2	1383.86
18	M219T6	6.424274	2.683533	8.710933	0.00205	i i	1 UP	218.9449	218.9418	218.9477	5.695417	5.605333	5.7692	3	3 3		0 82.29803	42.22965	24.09778	271.2949	38.64947
19	M479T18	9.003492	-3.17048	-12.1973	0.002075	<i>,</i>	1 DOWN	478.9563	478.948	478.9621	17.93925	17.73933	18.07167	4	4 2		2 752.7654	4720.456	550.9348	524.2916	226.9951
20	M780T16	2.50805	-1.32657	-10.3643	0.002309	1	1 DOWN	780.2218	780.2185	780.2251	15.52661	15.47277	15.58045	7	2 2		0 512.6193	2150.976	93.426	857.6286	194.9065
21	M641T10	1.671018	0.740727	9.738851	0.002339	1	1 UP	641.2035	641.2017	641.2045	9.875567	9.867233	9.8926	3	3 1		2 100.0927	426.1714	23.25036	712.1401	45.23385
22	M153T23	2.521678	1.334384	6.701285	0.002594	4	1 UP	153.0573	153.0568	153.0578	22.7915	22.77867	22.80433	2	2 0	1	2 30.38939	50.49542	14.31532	127.3332	13.76544
23	M241T14_	1.904398	0.929335	8.588919	0.002812	4	1 UP	241.0734	241.0729	241.0744	13.69837	13.65912	13.71953	6	ő <u>3</u>		3 866.4532	5397.736	478.8588	10279.44	860.1364
24	M625T10_	2.888792	1.530467	6.663759	0.002904		1 UP	625.189	625.1857	625.1905	10.36641	10.33667	10.42667	6	ő 3		3 1920.918	4147.634	1313.991	11981.65	1555.52
25	M182T9	2.466902	1.302701	9.025981	0.00314		1 UP	182.0479	182.0463	182.0491	8.7701	8.710167	8.8225	3	3 2		0 69.52372	154.8222	39.01952	381.9313	19.41162
26	M676T16_	2.159368	-1.11061	-6.35758	0.003199	j .	1 DOWN	676.2209	676.2182	676.2237	15.57671	15.54638	15.60703	2	2 2		0 871.6788	3372.814	335.32	1561.945	361.878
27	M356T22_	2.711366	1.43902	6.797359	0.00324	1	1 UP	356.1015	356.0981	356.103	21.8015	21.56083	21.86	4	4 3		1 352.9981	566.2024	147.484	1535.182	198.0201

Copy the whole data and transfer to a new datasheet. Then sort the data by retention time and remove the lines of data with retention times less than 10 min and greater than 22 min.

	1	J	к	L	м	N	0	Р	Q	R	S	т	U
	mzmin	mzmax	rtmed	rtmin	rtmax	npeaks	Genistein	Control	maxint	mean1	sd1	mean2	sd2
	577.114823	577.118315	10.0002	9.98428333	10.08875	6	3	3	5819.27273	15652.6766	6052.10577	27142.4086	15533.0731
	578.116943	578.12133	10.0002	9.98428333	10.08875	6	3	3	1562.57776	4239.41894	1882.55322	7063.7064	3942.29954
	432.971115	432.974526	10.0002	9.98428333	10.0605	6	3	3	244.840976	878.984048	404.227798	1312.79697	768.520567
	380.060739	380.062717	10.0002	9.98428333	10.0605	6	3	3	4558.22808	16700.9284	7333.06704	24488.7939	14991.1405
	677.320966	677.324475	10.0002	9.98555	10.08875	4	2	2	661.686261	1104.19126	1221.11153	1664.01209	2276.98364
	645.108428	645.111358	10.0002	9.98866667	10.0117333	2	0	2	126.929998	594.563619	265.106878	676.027128	310.213139
	599.097825	599.102954	10.0002	9.98428333	10.0605	6	3	3	198.338784	817.476845	415.713068	869.905794	268.083836
	606.283721	606.289623	10.0002	9.98428333	10.2050167	6	2	3	583.274221	1704.61584	1303.76713	1916.69405	2384.38901
	822.285153	822.291246	10.00185	9.98866667	10.0150333	2	0	2	104.442442	625.61984	461.265372	678.840542	511.19541
	583.233734	583.234215	10.0061667	9.98866667	10.0236667	2	0	2	78.4087572	614.154199	279.263082	494.244356	241.89756
	776.355734	776.359378	10.0073	9.98428333	10.0605	5	2	3	1672.49754	2803.68585	4067.74249	6454.11988	7671.46077
	623.042997	623.044694	10.008575	9.93201667	10.0851333	2	0	2	56.7314982	572.702655	194.966695	356.038638	191.38933
	382.066063	382.069539	10.00985	9.96043333	10.0605	4	2	2	1448.7371	3365.90074	4912.68743	3915.11761	5742.35892
	470.026387	470.031363	10.0104833	9.98428333	10.0605	4	3	1	83.8597532	351.57579	125.023528	502.248826	152.865551
	1	J	к	L	м	N	0	Р	Q	R	S	т	U
14	290.141925	290.144168	21.9761667	21.9746667	21.9776667	2	2	0	380.413931	2743.01527	1396.88845	2873.95165	369.706721
15	298.201533	298.202728	21.9765	21.9036667	22.0036667	3	1	2	467.662485	4025.60955	1647.77582	2874.57987	2277.49887
16	298.125517	298.131232	21.9765	21.931	22.1546667	3	0	3	173.181348	823.740349	264.104445	785.246934	108.895088
17	383.076415	383.079267	21.9776667	21.9776667	21.9776667	2	2	0	343.194075	1332.15603	1591.52138	3000.17134	875.027185
18	281.081409	281.084089	21.9776667	21.9393333	22.0033333	3	2	1	348.54677	1016.70928	1372.63357	1784.63992	1369.70715
19	453.136991	453.137177	21.9821667	21.931	22.0333333	2	0	2	288.789065	843.588548	43.8790933	1620.5716	636.764313
20	301.165912	301.166169	21.9821667	21.931	22.0333333	2	0	2	1418.99342	13536.4671	2130.41675	12866.4302	970.792114
21	227.147398	227.149332	21.9868333	21.8018333	22.1175	3	1	2	549.547714	5680.56266	2825.71165	3620.77891	1676.36616
22	556.988138	556.997507	21.9879167	21.8921667	22.1451667	4	2	2	89.788908	579.136534	56.0383595	518.289496	210.141536
23	240.167367	240.169097	21.9905	21.9485	22.2536667	6	3	3	374.984181	1511.26626	402.67445	2019.47367	626.919151
24	239.165176	239.166931	21.9905	21.9485	22.2536667	6	3	3	2348.14237	8036.74977	1897.52459	11935.0995	5195.79544
25	733.419768	733.420209	21.9930833	21.9776667	22.0085	2	2	0	160.758017	885.061338	660.846233	1205.20387	203.357591
26	585.196154	585.201533	21.9935833	21.8958333	22.0913333	2	2	0	188.855846	619.834623	201.037677	1289.36868	267.376402
27	163.114031	163.114308	21.9963333	21.9593333	22.0333333	2	0	2	77.1672733	139.610312	1.57265278	360.433053	148.874186
28	317.0936	317.094326	21.9963333	21.9593333	22.0333333	2	0	2	496.861884	1460.90117	532.556053	2136.57567	752.872931
29	385.147594	385.14818	21.9963333	21.9593333	22.0333333	2	0	2	573.817642	5496.51844	1181.11939	4484.32925	1761.94527
30	344.101211	344.107621	21.99675	21.9313333	22.0621667	2	2	0	83.013986	379.683531	167.606789	490.696097	40.5740687

nzmed	mzmin	mzmax	rtmed	rtmin		npeaks	Genistein	Control		maxint	mean1	sd1	mean2	sd2
27.179525	427.178088	427.181567	18.8429167	18.6953333	18.9068333		6	3	3	963460.11	3248009.63	1130471.98	6595400.41	5692890.26
349.00299	349.002682	349.003872	18.0955	17.8455	18.1018333		5	2	3	847738.735	6164608.52	6239665.79	578410.88	589944.776
01.023754	201.023303	201.025448	17.45	17.2176667	17.5013333		5	3	2	416393.822	4070005.41	3875251.78	10319.521	7068.81882
11.126995	411.124416	411.127481	11.1305083	11.1033667	11.1555167		6	3	3	278201.378	1305200.93	544816.011	1889834.15	430231.924
61.202442	361.200885	361.2042	20.2640833	20.1931667	20.4188333		6	3	3	309013.074	1394654.83	1413808.06	1632512.33	1118606.54
75.096998	275.095963	275.098057	18.63675	18.4908333	18.6806667		6	3	3	264985.171	1105088.16	325535.005	1735015.06	865324.662
83.083148	283.082521	283.084247	14.7281917	14.7267833	14.7542333		6	3	3	245492.781	1322023.04	317029.717	1427665.06	578933.157
43.174272	443.171242	443.17535	13.6674083	13.5581667	13.68745		6	3	3	194822.368	1158700.44	873617.017	1510345.82	947753.21
45.077324	445.075423	445.07836	15.537425	15.4995833	15.58045		6	3	3	226833.604	2624633.43	2097190.68	14138.1006	10175.335
28.183141	428.181441	428.184911	18.8429167	18.6953333	18.9068333		6	3	3	241333.293	795007.384	279555.516	1626053.63	1398494.55
37.233467	537.230533	537.234612	18.43075	18.2481667	18.4543333		6	3	3	351041.033	917555.761	890682.795	1422306.36	1221595
41.124663	341.123866	341.125697	16.783	16.6111667	16.8075		6	3	3	264216.604	1141138.01	875311.037	1177113.75	908002.23
369.15605	369.154368	369.157498	21.4693333	21.4235	21.7481667		6	3	3	109253.308	786951.812	237344.381	1223892.17	628813.198
97.098936	297.09764	297.099913	16.727	16.59685	16.8725		7	3	3	351464.949	1963294.47	1845002.57	16422.6965	7516.14404
95.202813	595.202128	595.203498	16.6951667	16.6633333	16.727		2	2	0	589148.917	1914099.33	2123022.57	4019.33515	1025.65466
91.091653	291.091107	291.092441	17.069	16.8955	17.1145		6	3	3	137013.856	686118.748	568601.69	1127334.03	45663.4263
23.260018	823.254914	823.261759	11.1305083	11.1033667	11.1555167		6	3	3	288897.422	541628.88	468141.217	1086715.18	525026.058
67.170465	567.168674	567.17118	14.7281917	14.7267833	14.7542333		6	3	3	281225.421	667485.304	339537.256	896691.569	666875.878
19.122502	319.121303	319.123766	18.451	18.2481667	18.7725		9	3	3	102506.583	493530.666	396507.217	1067031.67	142121.3
41.158641	441.156434	441.159753	15.0871667	15.0665	15.0996333		6	3	3	148885.753	725238.711	554770.601	816884.037	344122.877
75.097044	275.095739	275.097578	18.1688333	18.0143333	18.2195		6	3	3	151033.535	566141.233	118828.917	957125.325	458623.507
44.047715	144.047391	144.048428	17.1325	16.975	17.1703333		6	3	3	122580.635	636363.349	163405.092	885975.039	273610.577
87.008579	187.008291	187.009296	15.1606	15.1209667	15.1777167		6	3	3	130111.556	618663.6	317326.92	883883.891	473097.032
23.410588	723.406962	723.413081	20.2640833	20.1931667	20.4188333		6	3	3	258449.578	598118.308	927489.366	709978.5	886810.779
25.033337	525.031149	525.034867	13.5194167	13.45205	13.5338167		6	3	3	329846.341	1266847.86	1915432.54	31025.2247	34465.5586
50.006071	350.005653	350.006852	18.0955	17.8455	18.1018333		5	2	3	154259.415	1104459.26	1147041.55	101910.891	102783.969
49.093312	349.092037	349.094471	14.3770583	14.3566667	14.3953833		6	3	3	125217.836	683956.825	192997.673	489383.835	317184.108
91.091675	291.090876	291.092335	16.4187667	16.3022833	16.64865		9	3	3	93353.5956	592362.456	516016.909	546709.727	195690.082
91.162495	891.155776	891.162504	15.5204833	15.4995833	15.554		3	3	0	191063.401	1126799.22	1426317.65	886.263176	219.088928
29.181154	429.180536	429.184226	18.8561667	18.6953333	18.908		6	3	3	94511.9048	353024.185	126456.612	733119.799	596647.414
77.196754	377.19591	377.197522	16.7504167	16.6111667	16.8006667		6	3	3	75263.1223	441764.474	444926.638	573022.026	433644.809
09.102066	309.101249	309.10272	15.40555	15.3884333	15.4388333		6	3	3	64861.993	376852.532	282673.871	542373.863	174455.209

V	w	х	Y	Z	AA	AB	AC
neg_g4	neg_g5	neg_g6	neg_c4	neg_c5	neg_c6	rank#	average
2658463.98	4551392.31	2534172.59	4479791.26	2263200.54	13043209.4	1	4921705.02
13368583.5	2665031.68	2460210.41	1257271.29	287932.159	190029.192	2	3371509.7
55180.7885	7788693.2	4366142.23	11167.9792	16925.8175	2864.76649	3	2040162.46
1930009.04	929270.446	1056323.3	1946190.64	1434201.27	2289110.55	4	1597517.54
3008422.48	374068.62	801473.398	1314457.8	707375.591	2875703.59	5	1513583.58
1430693.25	779623.284	1104947.94	1048263.61	1449847.95	2706933.63	6	1420051.61
1207558.57	1680388.56	1078122	1989305.15	832864.274	1460825.77	7	1374844.05
261723.193	2006914.67	1207463.46	1593956.14	523557.521	2413523.8	8	1334523.13
5038270.95	1247596.61	1588032.74	25491.4107	11081.408	5841.48296	9	1319385.77
662527.903	1116174.91	606319.336	1121804.16	549612.842	3206743.89	10	1210530.51
1937639.22	293988.1	521039.958	912885.645	537866.924	2816166.51	11	1169931.00
2134187.35	481643.502	807583.173	1705600.66	1697085.97	128654.607	12	1159125.88
560259.64	1033678.37	766917.429	1330292.49	548666.881	1792717.15	13	1005421.99
11865.4283	3679264.36	2198753.63	24445.5754	9544.64192	15277.8724	14	989858.58
4157.38775	4199978.33	1538162.28	3687.1879	3200.91595	5169.9016	15	959059.33
1342630.57	350648.088	365077.586	1166597.85	1138180.18	1077224.05	16	906726.38
1080914.21	239819.471	304152.96	1152456.72	531914.429	1575774.38	17	814172.02
533449.994	1053582.02	415423.895	1564526.97	230779.369	894768.371	18	782088.43
923670.136	142619.109	414302.754	949707.435	1026322.1	1225065.47	19	780281.16
88072.9594	1101138.89	986504.287	1183879.95	501454.076	765318.082	20	771061.374
667875.37	435537.501	595010.827	680424.951	704434.339	1486516.68	21	761633.279
477136.764	803648.731	628304.55	1163147.1	616070.756	878707.258	22	761169.194
398371.236	982383.894	475235.671	1323669.99	383345.257	944636.429	23	751273.74
1668149.76	24230.5126	101974.649	332088.844	74706.7827	1723139.87	24	654048.404
3478518 5	177338 993	144686 092	70808 8919	12038 2087	10778 0734	25	648936 544

	A	В	C	Make a	a .cs	y file 1	for ea	ach :	sam
1	mzmed	rtmed	neg 👝						
2	427.179525	18.8429167	2651						
3	349.00299	18.0955	13368583.5			_			
4	201.023754	17.45	55180.7885			Save As: neg.	<u>.</u> g4		
5	411.126995	11.1305083	1930009.04			Tags:			
6	361.202442	20.2640833	3008422.48			in a	eskton		O Search
7	275.096998	18.63675	1430693.25			D 1 42 0 515 92 min	adi (0)	•	(content
8	283.083148	14.7281917	1207558.57	orites		216_2019M1_ESM	pdf		
9	443.174272	13.6674083	261723.193	- Movies		6600plus comparison	*		
10	445.077324	15.537425	5038270.95	Downio Downio	tions	Anatomy anenetics	/ Excel Workbook (xis	x)	
11	428.183141	18.8429167	662527.903		10113	ApplicationProfilir	Common Formata		
12	537.233467	18.43075	1937639.22	1 Docum	ents	bile acid	Excel 97-2004 Wo	rkbook (.xls)	
13	341.124663	16.783	2134187.35	01 Picture		Con	CSV UTF-8 (Comm	na delimited) (.cs	v)
14	369.15605	21.4693333	560259.64	MyExce	IFolder	cX-canvas1 (1).svg	Excel Template (.xl	tx)	
15	297.098936	16.727	11865.4283	and		cX-canvas1.svg Defachronic_electer	Excel 97-2004 Ter	nplate (.xlt)	
16	595.202813	16.6951667	4157.38775	⇒ iCloud I	Drive	Data analysis.pptx			
17	291.091653	17.069	1342630.57	Lyso-ar	achidonyl-conju	Database cpositive	Excel Macro-Enabl	ed Workbook (.xl	sm)
18	823.260018	11.1305083	1080914.21	ations		Drug library papers	Excel Binary Work	book (.xlsb)	
19	567.170465	14.7281917	533449.994	□ Stephe	n's MacBook Air	eb-65636-I636-et	Excel Macro-Enabl	ed Template (.xlt	m)
20	319.122502	18.451	923670.136	15		🚊 Gen_Con.zip	Tab delimited Text	(.txt)	
21	441.158641	15.0871667	88072.9594	10		Gen-Con_Ais_Rept	Excel 2004 XML S	preadsheet (.xml)	
22	275.097044	18.1688333	667875.37			Grants	Microsoft Excel 5.0	/95 Workbook (.)	ds)
23	144.047715	17.1325	477136.764			Letters	Space Delimited Te	ext (.prn)	
24	187.008579	15.1606	398371.236				Macintosh Formatte	ed Text (.txt)	
25	723.410588	20.2640833	1668149.76		Online Lo	cations File Forma	Macintosh Comma	Separated (.csv)	
26	525.033337	13.5194167	3478518.5				MS-DOS Comma S	eparated (.csv)	

Go to http://www.Metaboanalyst.ca

Tab-delimited	text (.txt) or comma-separated values (.csv) file:	
Data Type:	Concentrations	
Format:	Samples in rows (unpaired)	Submit
Data File:	Choose File No file chosen	
Zipped Files (zip) :	
Data Type:	NMR peak list MS peak list MS spectra	
Data File:	Choose File Gen_Con.zip	Submit
Pair File:	Choose File No file chosen	

Processing MS peak list data :

Peaks need to be matched across samples in order to be compared. For two-column format (mass and intensities), peaks are grouped by their m/z values. For three column data (mass, retention time, and intensities), the program will further group peaks based on their retention time. Users need to supply tolerance values in order to proceed. Here are some suggested values: mass tolerance - 0.25 (m/z); retention time - 30 (seconds) for LC-MS peak, and 5 (seconds) for GC-MS peaks. Please note, If a sample has more than one peak in a group, they will be replaced by their sum; some groups will be excluded if none of the classes has at least half its samples represented. Finally, the program create a peak intensity table in which each sample occupies a row and each column represents a peak group identified by the median values of its position (m/z and/or retention time).

Mass tolerance (m/z):	0.001	C.JH
Retention time tolerance:	0.005	Submr
MS peak processin	g information	
The uploaded files are peak lists and inte	nsities data.	
A total of 6 samples were found.		
These samples contain a total of 29994 p	eaks,	
with an average of 4999 peaks per sampl	e	
A total of 4999 peak groups were formed.		
Peaks of the same group were summed it	f they are from one samp	nple.
Peaks appearing in less than half of all sa	mples in each group we	ere ignored.
		Next

Fi	Itering features if their RSDs are > 25 % in QC samples
• N	one (less than 5000 features)
	iterquantile range (IQR)
) s	tandard deviation (SD)
() M	edian absolute deviation (MAD)
	elative standard deviation (RSD = SD/mean)
() N	on-parametric relative standard deviation (MAD/median)
() M	lean intensity value
() M	edian intensity value

Sample Normalization None Sample-specific normalization (i.e. weight, volume) Specify Normalization by sum Normalization by median Normalization by median Normalization by reference sample (PQN) Specify Normalization by reference feature Specify Quantile normalization Data transformation Obta transformation Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (akes the cube root of data values) Data scaling None Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable)	Sample Normalization None Sample-specific normalization (i.e. weight, volume) Specify: Normalization by sum Normalization by median Normalization by reference sample (PON) Specify: Normalization by reference sample from group Specify: Normalization by reference feature Specify: Quantile normalization Specify: Quantile normalization Specify: Out ransformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Dete root transformation (takes the cube root of data values) Data scaling (mean-centered and divided by the standard deviation of each variable) Auto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Ange scaling (mean-centered and divided by the range of each variable) Ange scaling (mean-centered and divided by the range of each variable)	Sample Normalization None Sample-specific normalization (i.e. weight, volume) Specify Normalization by sum Normalization by references ample (PQN) Specify Normalization by reference feature Specify Cuantile normalization Sumple specific normalization by reference feature Specify Cuantile normalization Starsformation None Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)		
None Sample-specific normalization (i.e. weight, volume) Specify: Normalization by sum Normalization by median Normalization by reference sample (PQN) Specify: Normalization by reference feature Specify: Quantile normalization Data transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mone Mean centering (mean-centered and divided by the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	None Sample-specific normalization (i.e. weight, volume) Specify Normalization by sum Normalization by reference sample (PQN) Specify Normalization by reference feature Specify Quantile normalization Quantile normalization e None Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (akes the cube root of data values) Data scaling None Nene Nene Nene Nene Nene Preto scaling (mean-centered and divided by the standard deviation of each variable) Range scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	None Sample-specific normalization (i.e. weight, volume) Specify Normalization by sum Normalization by median Normalization by reference sample (PQN) Specify Normalization by reference feature Specify Cuantile normalization Cuantile normalization Data transformation (generalized logarithm transformation or glog) Cube root transformation (itakes the cube root of data values) Data scaling Mean centering (mean-centered and divided by the standard deviation of each variable) Auto scaling (mean-centered and divided by the standard deviation of each variable) Range scaling (mean-centered and divided by the nange of each variable)	Sample Normalization	
Sample-specific normalization (i.e. weight, volume) Specify Normalization by sum Normalization by reference sample (PQN) Specify Normalization by reference feature Specify Quantile normalization Data transformation None Cube root transformation (itakes the cube root of data values) Data scaling None Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) 	Sample-specific normalization (i.e. weight, volume) Specify. Normalization by sum Normalization by reference sample (PQN) Specify. Normalization by reference sample from group Specify. Normalization by reference feature Specify. Outrille normalization Data transformation (generalized logarithm transformation or glog) Cube root transformation (dekes the cube root of data values) Data scaling None Mone Mone Secting (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Sample-specific normalization (i.e. weight, volume) Specify. Normalization by sum Normalization by reference sample (PQN) Specify. Normalization by reference feature Specify. Out attransformation Out transformation Cube root transformation (ace stee close of data values) Cube root transformation (takes the cube root of data values) Outs caling Mean-centered and divided by the standard deviation of each variable) Raree scaling (mean-centered and divided by the range of each variable)	None	
Image: Normalization by sum Normalization by median Normalization by reference sample (PQN) Specify Normalization by reference feature Specify Quantile normalization Data transformation I cg transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling Mone Mone Avio scaling (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable)	 Normalization by sum Normalization by median Normalization by reference sample (PQN) Spacify Normalization by a pooled sample from group Spacify Normalization by reference feature Spacify Quantile normalization Quantile normalization Normalization (generalized logarithm transformation or glog) Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (generalized logarithm transformation or glog) Normalization (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable) 	 Normalization by sum Normalization by median Normalization by reference sample (PQN) Specify Normalization by a pooled sample from group Specify Normalization by reference feature Specify Quantile normalization Mone Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mena centering (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable) 	Sample-specific normalization (i.e. weight, volu	me) <u>Specify</u>
Normalization by median Normalization by reference sample (PQN) Specify Normalization by a pooled sample from group Specify Quantile normalization Obta transformation None Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable)	Normalization by median Normalization by reference sample (PQN) Specify Normalization by reference feature Specify Quantile normalization	Normalization by median Normalization by reference sample (PQN) Specify. Normalization by reference feature Specify. Quantile normalization Data transformation @ None Log transformation (generalized logarithm transformation or glog) Cube root transformation (generalized logarithm transformation or glog) Data scaling None Pareto scaling (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Normalization by sum	
Normalization by reference sample (PQN) Specify Normalization by a pooled sample from group Specify Normalization by reference feature Specify Quantile normalization Specify Data transformation None Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Auto scaling (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable)	Normalization by reference sample (PQN) Specify Normalization by a pooled sample from group Specify Normalization by reference feature Specify Quantile normalization Specify Data transformation Generalized logarithm transformation or glog) Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Normalization by reference sample (PQN) Specify Normalization by a pooled sample from group Specify Normalization by reference feature Specify Quantile normalization	Normalization by median	
Normalization by a pooled sample from group Specify. Normalization by reference feature Specify. Quantile normalization Data transformation None Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None None Pate scaling (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Normalization by a pooled sample from group Specify: Normalization by reference feature Specify: Quantile normalization Data transformation Data transformation (generalized logarithm transformation or glog) Cube root transformation (dates the cube root of data values) Data scaling Mone Auto scaling (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Normalization by a pooled sample from group Specify: Normalization by reference feature Specify: Quantile normalization Data transformation None Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Auto scaling (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Normalization by reference sample (PQN)	Specify
Normalization by reference feature Specify Quantile normalization Data transformation • None Log transformation (generalized logarithm transformation or glog) Cube root transformation (idees the cube root of data values) Data scaling None Mean centering (mean-centered and divided by the standard deviation of each variable) • Pareto scaling (mean-centered and divided by the range of each variable)	Normalization by reference feature Specify Quantile normalization Data transformation None Cube root transformation (takes the cube root of data values) Data scaling None Bare centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Normalization by reference feature Specify Quantile normalization	Normalization by a pooled sample from group	Specify
Quantile normalization Data transformation None Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Quantile normalization Data transformation None Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Quantile normalization Data transformation • None Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Normalization by reference feature	Specify
Data transformation None Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable)	Data transformation None Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Data transformation None Cube root transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Quantile normalization	
 None Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) 	 None Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) 	 None Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) 	Data transformation	
Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling Pareto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Log transformation (generalized logarithm transformation or glog) Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize View Result	None	
Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable) Range scaling (mean-centered and divided by the range of each variable)	Cube root transformation (takes the cube root of data values) Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize View Result	Log transformation (generalized logarithm tra	ansformation or glog)
Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize	Data scaling None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize View Result	Cube root transformation (takes the cube root of da	ata values)
None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize	None Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize View Result	Data scaling	
Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize	Mean centering (mean-centered only) Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize View Result	None	
Auto scaling (mean-centered and divided by the standard deviation of each variable) Image scaling (mean-centered and divided by the square root of the standard deviation of each variable) Image scaling (mean-centered and divided by the range of each variable)	Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize Normalize Normalize Normalize Normalize Normalize Normalize Normalize Normalize Normalize Normalize Normalize Normalize Normal	Auto scaling (mean-centered and divided by the standard deviation of each variable) Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize View Result	Mean centering (mean-centered only)	
Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable)	Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) Range scaling (mean-centered and divided by the range of each variable) Normalize Visw Result Proceed	Auto scaling (mean-centered and divided by the	standard deviation of each variable)
Range scaling (mean-centered and divided by the range of each variable)	Range scaling (mean-centered and divided by the range of each variable)	Normalize View Result Proceed	Pareto scaling (mean-centered and divided by the	square root of the standard deviation of each variable)
	Normaliza Viaw Deauti Proceed	Normalize View Result Proceed	Range scaling (mean-centered and divided by the	range of each variable)
	Normalize View Result Proceed	Normalize View Result Proceed		

Select an analysis path to explore :	
Univariate Analysis	
Fold Change Analysis T-tests Volcano plot	
One-way Analysis of Variance (ANOVA)	
Correlation Analysis Pattern Searching	
Chemometrics Analysis	
Principal Component Analysis (PCA)	
Partial Least Squares - Discriminant Analysis (PLS-DA)	
Sparse Partial Least Squares - Discriminant Analysis (sPLS-DA)	
Orthogonal Partial Least Squares - Discriminant Analysis (orthoPLS-DA)	
Feature Identification	
Significance Analysis of Microarray (and Metabolites) (SAM)	
Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM)	
Cluster Analysis	
Hierarchical Clustering: Dendrogram Heatmaps	
Partitional Clustering: K-means Self Organizing Map (SOM)	
Classification & Feature Selection	
Random Forest	
Support Vector Machine (SVM)	

Multivariate analysis

Download.zip	opls splot 0 dpi72.png	
Rhistory.R	heatmap 1 .json	
pls_score3d_0json	fc_0_dpi72.png	
<u>plsda_coef.csv</u>	tree 0 dpi72.png	
fold change.csv	pls imp 0 dpi72.png After clicki	ng downloa
opisda score.csv	opls mdl 0 dpi72.png	
volcano 0 dpi72.png	349.00299 18.1 dpi72.png	
heatmap 1 dpi72.png	fc 1 dpi72.png	
opisda splot.csv	pls loading 0 dpi72.png	
<u>plsda_vip.csv</u>	pca score2d 0 dpi72.png	
met t omicsanalyst.json	data_processed.csv	
pls_score2d_0_dpi72.png	opisda model.csv	
pca_score3d_0json	pca loading_0 dpi72.png	

	Click
Generate Report	Analysis Report
Download.zip	opls splot 0 dpi72.png
Rhistory.R	heatmap 1 .json
pls_score3d_0_,json	fc_0_dpi72.png
plsda_coef.csv	tree 0 dpi72.png
fold_change.csv	pls imp 0 dpi72.png
opisda score.csv	opls_mdl_0_dpi72.png
volcano 0 dpi72.png	349.00299 18.1 dpi72.png
heatmap 1 dpi72.png	fc_1_dpi72.png
opisda splot.csv	pls_loading_0_dpi72.png
plsda vip.csv	pca score2d 0 dpi72.png

Metabolomic Data Analysis with MetaboAnalyst 4.0	
Name: guest7521987882463575885	
February 7, 2020	
1 Data Processing and Normalization	
1.1 Reading and Processing the Raw Data	
MetaboAnalyst accepts a variety of data types generated in metabolomic studies, including compound concentration data, binned NMR/MS spectra data, NMR/MS peak list data, as well as MS spectra (NetCDF, mzXML, mzDATA). Users need to specify the data types when uploading their data in order for MetaboAnalyst to select the correct algorithm to process them. Table 1 summarizes the result of the data processing steps.	Save this PDF file as a permanent record of the stats analysis
1.1.1 Reading MS Peak List and Intensities Data	
MS peak list and intensities data should be uploaded as one zip file. It contains subfoulders with one for each group. Each folder contains peak list files, one per spectrum. The MS peak list format is either a two-column (mass and intensities) or three-column (mass, retention time, and intensities) comma separated values. The first line is assumed to be column labels. The files should be saved in .csv format. For paired analysis, users need to upload separately a text file specifying the paired information. Each pair is indicated by their sample names separated by a colon "." with one pair per line.	
The uploaded files are peak lists and intensities data. A total of 6 samples were found. These samples contain a total of 29994 peaks, with an average of 4999 peaks per sample	

Click to download	Analysis Report
Download.zip	opls splot 0 dpi72.png
Rhistory.R	heatmap 1 .json
pls_score3d_0json	fc 0 dpi72.png
plsda_coef.csv	tree 0 dpi72.png
fold_change.csv	pls imp 0 dpi72.png
oplsda_score.csv	opls mdl 0 dpi72.png
volcano 0 dpi72.png	349.00299 18.1 dpi72.png
heatmap 1 dpi72.png	fc 1 dpi72.png
opisda_splot.csv	pls loading 0 dpi72.png
<u>plsda_vip.csv</u>	pca_score2d_0_dpi72.png
met t omicsanalyst.ison	data processed.csv

	A	В	Ent	er C	D	
1		Comp. 1		Comp. 2	Comp. 3	
2	61.99289/15	0.090	303	0.1383	0.13957	
3	61.99239/14	0.10	955	0.11619	0.11844	
4	61.99283/14	0.12	453	0.12386	0.12377	
5	61.99277/14	0.028	696	0.037486	0.037772	
6	61.99271/18	0.23	098	0.23773	0.23708	The <i>m/z</i> and RT information
7	61.99234/17	0.47	814	0.46984	0.47234	concatenated
8	61.99267/19	0.13	618	0.26042	0.40942	
9	61.99287/13	0.50	075	0.51901	0.51838	
10	61.99333/19	0.050	071	0.073464	0.11908	
11	96.96241/11	0.049	401	0.049917	0.049868	
12	107.05247/1	0.0075	746	0.063315	0.07338	
13	112.98773/1	0.75	982	0.75378	0.75586	
14	112.98779/1	0.63	804	0.62778	0.63235	
15	112.9878/14	0.056	392	0.075238	0.091758	

	A	В	С	D	E	
1			Comp. 1	Comp. 2	Comp. 3	
2	61.99289/15.7		0.090303	0.1383	0.13957	
3	61.99239/14.9	2	0.10955	0.11619	0.11844	
4	61.99283/14.2	6	0.12453	0.12386	0.12377	
5	61.99277/14.5	5	0.028696	0.037486	0.037772	
6	61.99271/18.5	7	0.23098	0.23773	0.23708	
7	61.99234/17.1	.3	0.47814	0.46984	0.47234	Insert a new column (B)
8	61.99267/19.1	.6	0.13618	0.26042	0.40942	
9	61.99287/13.7	4	0.50075	0.51901	0.51838	
10	61.99333/19.6	5	0.050071	0.073464	0.11908	
11	96.96241/11.0	8	0.049401	0.049917	0.049868	
12	107.05247/15	15	0.0075746	0.063315	0.07338	
13	112.98773/15	.79	0.75982	0.75378	0.75586	
14	112.98779/14	.53	0.63804	0.62778	0.63235	
15	112.9878/14.9	4	0.056392	0.075238	0.091758	
16	112.98773/16	.6	0.3355	0.32963	0.32863	

i this is correct, choose	e next, or choose the Data Type that best describes your data.	
Delimited - Charac Fixed width - Fields a	ters such as commas or tabs separate each field. are aligned in columns with spaces between each field	
		Go to data and
		"Text to column"
Preview of selected data	a:	
Preview of selected dat	a:	Select Next
1 261.99289/15.7		
1 2 61.99289/15.7 3 61.99239/14.92 4 61.99283/14.26 5 61.99272/14.55		
$\frac{1}{2} \frac{5}{61.99289/15.7} \\ \frac{3}{61.99239/14.92} \\ \frac{4}{61.99283/14.26} \\ \frac{5}{61.99277/14.55} \\ \frac{6}{61.99277/14.55} \\ \frac{7}{6199274/17} \frac{13}{13} \\ \frac{7}{619927} \\ \frac{7}{6199274} \\ \frac{7}{619927} \\ $		
1 2 61.99289/15.7 3 61.99283/14.92 4 61.99283/14.26 5 61.99277/14.55 6 61.99271/18.57 7 61.99224/17.13 8 61.99224/17.13 8 61.99267/19.16		

Delimiters		
🗌 Tab	Treat consecutive delimiters as one	
Semicolon	Text qualifier:	
Comma		
Space		
Other: /		• · · · · · · · ·
Preview of selected data:		Set the delimiters
Preview of selected data:	0	Set the delimiters Note how the concatenated item ha
Preview of selected data:		Set the delimiters Note how the concatenated item ha been separated
Preview of selected data: 51.99289 15.7 51.99239 14.92 51.99277 14.55 51.99277 14.55 51.99277 14.55		Set the delimiters Note how the concatenated item ha been separated
Preview of selected data: 61.99289 15.7 61.99239 14.92 61.99271 14.55 61.99271 18.57 61.99271 18.57 61.99271 19.15 61.99271 19.16		Set the delimiters Note how the concatenated item h been separated

	A	В	С	D	E	
1	mass	RT	Comp. 1	Comp. 2	Comp. 3	
2	61.99289	15.7	0.090303	0.1383	0.13957	
3	61.99239	14.92	0.10955	0.11619	0.11844	
4	61.99283	14.26	0.12453	0.12386	0.12377	
5	61.99277	14.55	0.028696	0.037486	0.037772	
6	61.99271	18.57	0.23098	0.23773	0.23708	
7	61.99234	17.13	0.47814	0.46984	0.47234	
8	61.99267	19.16	0.13618	0.26042	0.40942	
9	61.99287	13.74	0.50075	0.51901	0.51838	Add boodings to columns A and B
10	61.99333	19.6	0.050071	0.073464	0.11908	Add headings to columns A and B
11	96.96241	11.08	0.049401	0.049917	0.049868	
12	107.05247	15.15	0.0075746	0.063315	0.07338	
13	112.98773	15.79	0.75982	0.75378	0.75586	
14	112.98779	14.53	0.63804	0.62778	0.63235	
15	112.9878	14.94	0.056392	0.075238	0.091758	
16	112.98773	16.6	0.3355	0.32963	0.32863	
17	112.98775	15.31	0.83102	0.82943	0.82709	
18	112.98782	13.89	0.11919	0.14435	0.16771	
19	112.9877	12.3	2.5067	2.4651	2.457	

	A	В	С	D	E	
1	mass	RT	Comp. 1	Comp. 2	Comp. 3	
2	349.00299	18.1	17.817	17.55	17.501	
3	201.02375	17.45	17.508	17.411	17.36	
4	445.07732	15.54	13.742	13.502	13.474	
5	297.09894	16.73	12.176	12.12	12.082	
6	595.20281	16.7	11.452	11.344	11.335	
7	427.17953	18.84	9.6997	9.9662	9.9341	
8	350.00607	18.1	7.4419	7.334	7.3134	
9	891.16249	15.52	7.3569	7.2547	7.2389	Sort the data according to Comp 1
10	525.03334	13.52	6.6131	6.5834	6.5658	and largest to smallest and select
11	446.08157	15.55	6.5943	6.4787	6.4649	those with Comp 1 >3
12	319.1225	18.45	6.5077	6.4327	6.4229	
13	596.20615	16.7	6.415	6.3529	6.3489	
14	269.04658	17.87	6.3683	6.2845	6.2667	There are 63 ions that fit this.
15	411.12699	11.13	6.2377	6.1476	6.1438	
16	823.26002	11.13	6.1736	6.0729	6.0549	Copy these lines to two new sheets
61	699.24661	14.48	3.0521	2.9996	2.9916	
62	242.1407	14.89	3.043	2.9902	2.9803	
63	269.04632	20.54	3.0379	3.0067	2.9987	
64	668.11943	15.52	3.0214	2.9803	2.9744	

dd levels to	sort by:			🗹 My list has headers
	Column Sort On Order		Color/Icon	
Sort by	Comp. 1	Values	Cargest to Sr	mallest 🌣 🔿
+ - Cop	У			
+ — Cop	У		Options	Cancel OK

1	by mass	RT	Comp. 1	Comp. 2	Comp. 3
2	172.09962	15.71	3.217	3.2033	3.1932
3	186.11528	17.78	4.9117	4.8352	4.8199
4	198.11498	18.67	4.7213	4.6687	4.6558
5	201.02366	17.72	5.6374	5.6844	5.6848
6	201.02375	17.45	17.508	17.411	17.36
7	202.02746	17.43	5.6319	5.5943	5.58
8	203.02021	17.46	4.3899	4.3613	4.3497
9	214.10998	17.38	3.777	3.7226	3.710
10	216.12551	16.5	4.3984	4.3781	4.363
11	242.1407	14.89	3.043	2.9902	2.980
12	269.04632	20.54	3.0379	3.0067	2.998
13	269.0464	18.1	5.0041	4.9337	4.924
14	269.04648	15.53	3.6337	3.5701	3.562
15	269.04658	17.87	6.3683	6.2845	6.266
16	275.097	18.64	5.1923	5.1321	5.166
17	275.09704	18.17	4.2569	4.2184	4.232
18	291.09146	17.9	3.3351	3.2838	3.279
19	291.09165	17.07	5.783	5.828	5.810
20	297.09894	16.73	12.176	12.12	12.08
21	298.10317	16.7	4.8879	4.8628	4.848
22	309.10186	15.65	3.5386	3.5236	3.514
23	309.10207	15.41	3.3566	3.4641	3.453
24	317.06893	14.53	3.799	3.7338	3.738
25	319.1225	18.45	6.5077	6.4327	6.422

The data are sorted by mass. The m/z of a ¹³C-isotope of a metabolite will be ~1.003 amu larger. It also has to have the same retention time. Two ¹³C-isotopes are highlighted in yellow. Note that the comp 1 value will be smaller for the ¹³Cisotope.

As an exercise, find all the other isotope pairs.

Column Sort On Order Color/Icon Sort by by mass Values Smallest to Largest + - Copy Options Cancel Options	Column Sort On Order Color/Icon by mass Values Smallest to Largest - Copy Options Cancel OK	Column Sort On Order Color/Id Sort by by mass Values Smallest to Largest	n Order Color/Icon s Smallest to Largest S	Column Sort On Order Color/Icon ort by by mass Values Smallest to Largest
Sort by by mass O Values Smallest to Largest + - Copy	by by mass OValues Of Smallest to Largest O	Sort by by mass \diamond Values \diamond Smallest to Largest \diamond	s 🗘 Smallest to Largest 🗘 🤤	ort by by mass C Values Smallest to Largest S
+ – Copy Options Cancel Of	– Copy Options Cancel OK			- Copy
H – Copy Options Cancel	– Copy Options Cancel OK			- Copy
+ – Copy Options Cancel	– Copy Options Cancel OK			- Copy
⊢ — Copy Options Cancel Of	– Copy Options Cancel OK			- Copy
- Copy Options Cancel Of	– Copy Options Cancel OK			- Copy
- – Copy Options Cancel Of	– Copy Options Cancel OK			
- Copy Options Cancel Of	- Copy Options Cancel OK			- Conv
⊢ — Copy Options Cancel Of	- Copy Options Cancel OK			- Copy
+ – Copy Options Cancel Of	– Copy Options Cancel OK			- Copy
+ – Copy Options Cancel Of	– Copy Options Cancel OK			- — Copy
+ – Copy Options Cancel Of	- Copy Options Cancel OK			- Copy
+ – Copy Options Cancel Of	- Copy Options Cancel OK			- Copy
+ – Copy Options Cancel Of	Options Cancel OK			- Copy
Options Cancel Of	Options Cancel OK	+ - Copy		000)
Options Cancel O	Options Cancel OK			
		Options Cancel		
		optionom output	Options Cancel OK	Options Cancel OK
			Options Cancel OK	Options Cancel OK

	A	В	с	D	E	
1	mass	RT	Comp. 1	Comp. 2	Comp. 3	
2	411.12699	11.13	6.2377	6.1476	6.1438	
3	823.26002	11.13	6.1736	6.0729	6.0549	
4	824.26237	11.13	3.7999	3.7382	3.7273	
5	373.1102	12.77	3.3894	3.3484	3.3558	
6	404.192	13.33	5.0639	4.9752	4.9589	The da
7	525.03334	13.52	6.6131	6.5834	6.5658	¹³ C-iso
8	526.03718	13.53	3.2907	3.2759	3.2669	amula
9	525.03344	14.14	5.6579	5.6157	5.6009	
10	699.24661	14.48	3.0521	2.9996	2.9916	retent
11	317.06893	14.53	3.799	3.7338	3.7381	value
12	242.1407	14.89	3.043	2.9902	2.9803	
13	309.10207	15.41	3.3566	3.4641	3.4532	Acon
14	891.16249	15.52	7.3569	7.2547	7.2389	
15	892.16544	15.52	5.1786	5.1087	5.0973	pairs a
16	893.17404	15.52	4.5894	4.5276	4.5175	2H] ²⁻ .
17	668.11943	15.52	3.0214	2.9803	2.9744	
18	269.04648	15.53	3.6337	3.5701	3.5622	
19	445.07732	15.54	13.742	13.502	13.474	
20	447.09202	15.54	6.1545	6.0467	6.0316	
21	446.08157	15.55	6.5943	6.4787	6.4649	

The data are sorted by RTs. The m/z of a ¹³C-isotope of a metabolite will be ~1.003 amu larger. It also has to have the same retention time. Note that the comp 1 value will be smaller for the ¹³C-isotope.

As an exercise, find all the other isotope pairs and the dimers $[2M-H]^{-}$ and $[2M-2H]^{2-}$.